Endoscopic retrograde cholangiopancreatography-related perforation: Management and prevention

Varayu Prachayakul, Pitulak Aswakul

Varayu Prachayakul, Siriraj GI Endoscopy Center, Division of Gastroenterology, Department of Internal Medicine, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok 10700, Thailand
Pitulak Aswakul, Liver and Digestive Institute, Samitivej-Sukhumvit Hospital, Bangkok 10120, Thailand

Author contributions: Prachayakul V and Aswakul P contributed equally to this work; Prachayakul V designed the concept; Prachayakul V and Aswakul P reviewed the literature, wrote and revised the paper.

Correspondence to: Varayu Prachayakul, Assist Professor, Siriraj GI Endoscopy Center, Division of Gastroenterology, Department of Internal Medicine, Siriraj Hospital, Faculty of Medicine, Mahidol University, 7 Prannok Rd., Bangkoknoi, Bangkok 10700, Thailand. kaiyjr@gmail.com
Telephone: +66-2-4121088 Fax: +66-2-4199610
Received: May 1, 2014 Revised: July 7, 2014 Accepted: July 25, 2014 Published online: October 16, 2014

Abstract

Endoscopic retrograde cholangiopancreatography (ERCP) is a procedure that can result in serious complications, and thus should be handled by a skilled endoscopist to minimize the risk of complications and to enhance the success rate. The incidence of ERCP-related complications is 5%-10%, most commonly involving post-ERCP pancreatitis and clinically significant post-endoscopic sphincterotomy bleeding. Although ERCP-related perforation has a relatively lower incidence of 0.14%-1.6%, this complication is associated with a high mortality rate of 4.2%-29.6%. A classification of perforation type based on the instrument that caused the perforation was recently described that we postulated could affect the implementation of perforation management. In the present article, an algorithm for management and prevention of ERCP-related perforations is proposed that is based on the perforation type and delay of diagnosis. Available evidence demonstrates that a delayed diagnosis and/or treatment of perforation results in a poorer prognosis, and thus should be at the forefront of procedural consideration. Furthermore, this review provides steps and recommendations from the pre-procedural stage through the post-procedural evaluation with consideration of contributing factors in order to minimize ERCP-related complication risk and improve patient outcome. To avoid perforation, endoscopists must evaluate the risks related to the individual patient and the procedure and perform the procedure gently. Once a perforation occurs, immediate diagnosis and early management are key factors to minimize mortality.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Endoscopic retrograde cholangiopancreatography; Endoscopic retrograde cholangiopancreatography; Perforation; Prevention; Management; Classification

Core tip: Endoscopic retrograde cholangiopancreatography (ERCP)-related perforation, is a rare complication with a high morbidity and mortality. An immediate diagnosis and early management of ERCP-related perforation are key factors to minimize mortality. In this review article, the authors shared their experiences and propose an algorithm to avoid perforation and for management once a perforation occurs.

INTRODUCTION

Endoscopic retrograde cholangiopancreatography (ERCP)
is a procedure that should be performed by a skilled endoscopist to maximize the success rate and minimize complications, which occur in 5%-10% of cases. The most common complications are post-ERCP pancreatitis (1.0%-3.5% of cases) and clinically significant post-endoscopic sphincterotomy bleeding (0.1%-2.0% incidence). ERCP-related perforations are relatively uncommon (incidence of 0.14%-1.6%), though associated with a high mortality rate of 4.2%-29.6%.

TABLE 1 Previous classifications of endoscopic retrograde cholangiopancreatography-related perforations

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Lateral or medial wall perforation</td>
</tr>
<tr>
<td>Type II</td>
<td>Perivaterian injury</td>
</tr>
<tr>
<td>Type III</td>
<td>Distal bile duct injury related to wire/basket instrumentation</td>
</tr>
<tr>
<td>Type IV</td>
<td>Retroperitoneal air alone</td>
</tr>
</tbody>
</table>

CLASSIFICATIONS OF ERCP-RELATED PERFORATION

ERCP-related perforations were previously classified into 3-4 types, regardless of the site of perforation (Table 1). In 2011, Kim et al[16] proposed a new classification based on the instrument that caused the perforation. A type I perforation results from the scope itself, which always causes a large perforation with heavy contamination (Figure 1). A type II perforation can be caused by the needle-knife used during the sphincterotomy, from the ERCP cannula or the sphincterotome, which cause a moderate-sized hole with less contamination. Type III refers to a perforation caused by the guidewire and is associated with the least risk of contamination. A review of cases presented by Kim et al[16] and an additional 62 cases from Kwon et al[17] that were reevaluated using the new classification, revealed that 80% of patients with type I perforations (20/25 cases) required surgery, compared to 19% (7/37) of those with type II perforations. We therefore postulated that this classification could be used to direct the management of patients with perforations.

EARLY RECOGNITION OF PERFORATIONS

Most type I perforations are immediately recognized by the endoscopist during the procedure. Large perforations can be definitively indicated by visualization of intra-abdominal organs, whereas smaller perforations may show only yellowish tissue of intra/retroperitoneal fat or by bleeding from other sites such as a lateral wall of the duodenum (Figure 2). If the endoscopist who performed the procedure suspects a perforation, evaluation of the pneumoperitoneum by fluoroscopy can be very helpful (Figure 3A). Some experts also recommend changing the duodenoscope to an end-view type for better mucosal visualization.

MANAGEMENT

General principles of management for ERCP-related perforation include a nil per os directive, fluid resuscitation, administration of antibiotics to decrease intra/retroperitoneal contamination or fluid collection, pneumoperitoneal decompression, and, if possible, endoscopic closure. In some cases, surgical consultation may also be needed to control sepsis and repair the perforation, depending on the site and degree of leakage, the patient’s condition, and mechanism of injury. Radiologic interventions were
found to be useful in some particular cases, particularly those with localized retroperitoneal fluid collection and without clinical sign of peritonitis[17]. However, the management of ERCP perforation in that particular study was based upon whether the perforation was diagnosed immediately after it occurred, or delayed by at least 24 h after the procedure (recognized by abnormal vital or abdominal signs).

Immediate diagnosis
Type I perforations, which are typically 1.0-1.3 cm wide, have been successfully treated during ERCP with hemostatic clips either through the gastroscope(with or without cap assistance)[18,19] or with an endoloop[20], or with over-the-scope clips[21]. Contrast injections should be administered to rule out leakage, as 30%-60% of type I perforations fail endoscopic closure and require surgery. Patients who undergo immediate surgical correction typically remain in the hospital for 12-16 d. Prompt diagnosis is crucial, as evidenced by a study of Miller et al[11] that reported two deaths out of five cases involving type I perforations, resulting from delayed diagnosis in one case, and delayed operation in the other, and six deaths from delayed surgical repair of type II perforations that were initially managed with a conservative treatment strategy[11]. Thus, some surgeons recommend immediate diagnosis and early surgery for ERCP-related perforations[22-24]. In our endoscopic center (within a tertiary care, university-based hospital), 4082 ERCP procedures were performed between January 2009 and June 2013, with a post-ERCP perforation rate of 0.29% (n = 10 type I; n = 2 type II perforation cases). All of the patients (65-91 years old) were diagnosed during or immediately upon finishing the ERCP procedures. Eighty-three percent of these cases underwent surgical correction while only 17% received conservative treatment, with no deaths.

Mao et al[25] reported on nine cases of ERCP-related perforation (mostly type II), six of which were managed conservatively with hospital stays ranging from 4 to 75 d. Subcutaneous emphysema was a significant clinical sign.
found in seven of the nine patients. To aid in the success of conservative treatments, which included antibiotics, endoscopic treatment (when possible), intensive observation and follow-up imaging, nasobiliary and gastrointestinal drainage was recommended to reduce the leakage of digestive juices. However, very high success rates were also reported with conservative treatment (with or without nasobiliary drainage) by Park et al.[26] and Vezakis et al.[27], using fully covered self-expandable metal stents for closure of perforated sites at the ampullary region.

The majority of type III perforations involve only mild contrast leakage or pneumoperitoneum without contrast leakage, and can be managed conservatively, requiring hospitalization for only 5-6 d[11,24]. Genzlinger et al.[28] found that up to 29% of patients who underwent ERCP showed pneumoperitoneum on plain radiography without clinical significance. However, further investigation is recommended in patients who have pneumoperitoneum and clinical signs of infection.

The surgical indications in the studies mentioned here differed from recommendations stated by Stapfer et al.[29], which include large extravasation of contrast, fluid collection in the peritoneal or retroperitoneal space on follow-up computed tomography scan, massive subcutaneous emphysema, or retained choledocholithiasis. Our recommendation is to perform salvage surgery in patients with: (1) failure of initial endoscopic closure, especially type I or type II perforations; (2) no improvement in clinical signs of sepsis, or follow-up abdominal signs worsening within 12-24 h after successful endoscopic closure (type I) or conservative management (type II); and (3) retained instruments or choledocholithiasis requiring surgical removal.

Delayed diagnosis
The prognosis is generally worse for any type of perforation with a delayed diagnosis, and most patients develop clinical signs of peritonitis and sepsis within 1-5 d after the procedure[26-28]. It is important to note that abdominal signs might be relatively benign within the first few hours, even for type I perforations, however the presentation of peritoneal signs as a late finding is related to a poor clinical outcome[11]. Surgical drainage and correction is recommended in cases of delayed type II diagnosis with clinical sepsis[11,21,26]. However, most patients (50%-90%) having type II perforations with minimal leakage or type III perforations will respond to conservative treatment.

PREVENTION OF ERCP-RELATED PERFORATION

There are several factors that have been associated with an increased risk of ERCP-related perforation (Table 2). Nonetheless, there are steps that can be taken to avoid causing ERCP-related perforations, beginning before the procedure, and continuing through the follow-up stage (Figure 5).

Pre-procedural evaluation
Some patients have a higher risk of perforation because of surgically altered anatomy. Such patients should undergo “endoscopic scanning” using an end-view gastroscope before starting ERCP. In cases of failure to pass the end-view scope owing to anastomotic stricture or too much resistance, continuation with the ERCP procedure should first be discussed with the patients and their families. If the endoscopist decides to follow through with the procedure, a duodenoscope should be inserted in an “over-the-guidewire” fashion to minimize duodenal wall injury. When narrowing of the anastomosis site is encountered, balloon dilatation over the guidewire can be helpful prior to duodenoscopy insertion. However, this is not recommended for cases with malignant strictures, but rather duodenal stenting with a self-expandable metal stent followed by ERCP in the subsequent weeks is more appropriate.

During bile duct cannulation and intervention
There are several comments and recommendations concerning the procedure that should be kept in mind: (1) Patients with peripancreatic diverticula have a higher risk of perforation, especially from sphincterotomy. Therefore, the endoscopist must be very careful during this
process. A balloon sphincteroplasty is recommended in such cases, rather than endoscopic sphincterotomy; (2) Insertion of any ERCP instruments into the bile duct should be performed in an “over-the-guidewire” fashion to prevent a “false track.” Furthermore, the endoscopist should perform ERCP as gently as possible to minimize tissue injury; (3) Endoscopic sphincterotomy should be carried out in the suggested direction of 11 to 12 o’clock for the common bile duct and 12 to 2 o’clock for the pancreatic sphincterotomy. Over-bowling of the sphincterotomy should be avoided to prevent a “zipper cut,” and cutting should not go beyond the second fold above the papilla. Adequate knowledge and intensive observation of ampulla anatomy are essential for all endoscopists who perform ERCP; (4) Needle-knife sphincterotomy should be performed only by experienced endoscopists. Those who are less experienced should recognize their limitations and be responsible enough to request assistance; and (5) Dilatation of the ampulla increases the risk of perforation. Therefore, the endoscopist should consider the length of sphincterotomy or the size of balloon sphincteroplasty suitable for the objective of the maneuver, such as limited or no sphincterotomy for stenting, dilating the ampulla no more than the size of the common bile duct above, and an appropriately sized sphincterotomy depending on the size of the stone.

During fluoroscopy

The endoscopist should observe the patient’s abdominal signs and perform fluoroscopy intermittently during the ERCP procedure. A diagnosis can be immediately made upon recognition of an abnormal guidewire position, extravasation of contrast, or pneumoperitoneum, which can allow for prompt treatment. Furthermore, a fluoroscopic abdominal scan should be performed after any difficult procedure to identify possible complications.

Post-procedural care

Patients should be encouraged to promptly report any abdominal symptoms and should be watched for abnormal clinical signs after the ERCP procedure. The ward staff should be notified to maintain special observation of patients with difficult cases for early detection of possible complications.

CONCLUSION

As ERCP-related perforations are a serious complication with a high mortality rate, endoscopists should perform the procedure with caution. To avoid perforation, endoscopists must evaluate the risks related to the patient and the procedure and perform the procedure with care. Once a perforation occurs, immediate diagnosis and early management are key factors to minimize mortality.

REFERENCES

2. Wu HM, Dixon E, May GR, Sutherland FR. Management of perforation after endoscopic retrograde cholangiopancreatography (ERCP); a population-based review. HPB (Oxford) 2006; 8: 393-399 [PMID: 18330393]
Case series: pneumoretroperitoneum secondary to duodenal perforation after endoscopic retrograde cholangiopancreato-

17 **Krishna RP**, Singh RK, Behari A, Kumar A, Saxena R, Kapo-
or VK. Post-endoscopic retrograde cholangiopancrea-

18 **Lee TH**, Bang BW, Jeong JI, Kim HG, Jeong S, Park SM, Lee DH, Park SH, Kim SJ. Primary endoscopic approxima-
tion suture under cap-assisted endoscopy of an ERCP-

20 **Kwon CI**, Song SH, Hahm KB, Ko KH. Unusual complications related to endoscopic retrograde cholangiopancrea-

21 **Salord S**, Cornals JB, Maisterra S, Pons C, Busquets J, Fab-
regat J. Endoscopic closure of duodenal perforation with an over-the-scope clip during endoscopic ultrasound-guided cholangiopancreato-

22 **Dubecz A**, Ottmann J, Schweigert M, Stadlhuber RJ, Feith M, Wiessner V, Muschweck H, Stein HJ. Management of ERCP-

23 **Palanivelu C**, Jategaonkar PA, Rangarajan M, Anand NV, Senthilnathan P. Laparoscopic management of a retroperi-
toneal duodenal perforation following ERCP for periampu-

24 **Enns R**, Eloubeidi MA, Mergener K, Jowell PS, Branch MS, Pappas TM, Baille J. ERCP-related perforations: risk fac-

27 **Vezakis A**, Fragulidis G, Nastos C, Yiallourou A, Polydorou A, Voros D. Closure of a persistent sphincterotomy-related duodenal perforation by placement of a covered self-ex-

28 **Genzlinger JL**, McPhee MS, Fisher JK, Jacob KM, Helzberg JH. Significance of retroperitoneal air after endoscopic ret-